Oxford Cambridge and RSA

GCSE

Mathematics B (Linear)

Component J567/03: Mathematics Paper 3 (Higher)
General Certificate of Secondary Education

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Inore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
Omission sign	

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

2. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
\mathbf{B} marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.

MARK SCHEME

Question		Answer	Marks	Part marks and guidance	
1	(a)	200	2	M1 for $240 \div(1+5)$ or 40 seen	
	(b)	77	2	M1 for $22 \div 2$ or 11 seen or $7 \div 2$ or 3.5 seen	
2	(a)	68 and alternate [angle]	1	condone Z-angle penalise alternate and corresponding together and penalise alternate and opposite together	condone 'alternative' and 'alternating'. Allow 68 and corresponding providing 68 marked as opposite on diagram at B or D Allow 68 and [angles in a] four sided shape equals 360 (angles must be marked on the diagram) Allow [angles in a] triangle equals 180 providing 95 is marked in the correct position
	(b)	one mark for each reason (maximum of two) from - angle[s] ... triangle [add to 180] - angle[s] ... quadrilateral [add to 360] - corresponding or allied [angles] - [vertically] opposite [angles] or angles round a point [add to 360] - angles... line [add to 180]	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	or FT 180-17 - their(a) condone F-angle condone X -angle	accept 4 sided shape/trapezium

Question		Answer	Marks	Part marks and guidance	
3	(a)	92	3	M2 for 80×1.15 or M1 for 80×0.15 oe soi by 12 or their 10% soi by 8 and their 5% soi by 4 and M1 for $80+$ their 12 or 80 + their 10% + their 5% oe accept correct alternative methods	If they do not get the correct values of 8 and 4 we need to see working e.g. for 10% we could see $80 \div 10$ and for 5% we could see their 10% $\div 2$ Can be implied from a correct addition
	(b)	A or 30[g] or 23[p] and three correct valid comparisons eg cost for 300 g $230,234,240$	3	B2 for three correct valid comparisons with incorrect answer or no answer or A and three correct valid comparisons with at most one numerical error or B1 for an attempt at converting two items to a common unit accept any correct comparison eg cost per 1g; 0.76[..] or 0.77, 0.78, 0.8[0] or amount per 1p; 1.3[...], 1.28[...], 1.25	they may do this in pairs
4	(a)	$10 x+15$ final answer	1		
	(b)	$3 x(x-4)$ final answer	2	M1 for $3\left(x^{2}-4 x\right)$ or $x(3 x-12)$	Condone omission of final bracket $(3 x+0)(x-4)$ or $-3 x(4-x)$ scores 2 , correct answer seen then spoiled is 1 mark

Question			Answer	Marks	Part marks and guidance	
5			complete correct net	3	B2 for correct net with additional rectangles or 3 or 4 additional correct rectangles in the correct places or a correct outline with missing internal lines B1 for 3 or 4 additional correct rectangles in the correct places with extra incorrect rectangles or for 1 or 2 additional correct rectangle(s) in the correct place(s)	Condone freehand and dotted internal lines, mark intent, ignore flaps
6	(a)	(i)	660 to 680	1		
		(ii)	$330-340 \mathrm{mph}$ or $5.5-5.7 \mathrm{mpm}$ or $[0] .0916-[0] .095 \mathrm{mps}$	3	B2 for answer of 330-340 or 5.5-5.7 or [0]. 0916 - [0]. 095 or FT their (a)(i) \div 2 correctly calculated or M1 for 'a distance' - 'a corresponding time taken' e.g. their(a)(i) $\div 2$ or $770 \div$ (2 h 20 m or 220 or 140 or $2 \frac{1}{3} \mathrm{oe}$) and B1 for the correct units for their answer If $\mathbf{0}$ scored award $\mathbf{B 1}$ for units of mph with no working	We look at their number to indicate the units they are using They must use the outward journey Allow m/h, m/m or m/s
	(b)		1150 [am] cao	1		
	(c)		[0]9 20[am] [and] 1500	1,1	condone 1455-1500 or $255-3[00]$ pm for second time	1500 pm scores 0

7^{*}	The correct final answer of R[osie] = 17, D[aisy] = 14, T[illy] = 12 and M[olly] = 8 with supporting algebraic working or at least one other numerical attempt seen. Correct spelling and grammar is used and the working is set out in a logical manner that makes it easy to follow.	$\mathbf{5}$	
The correct final answer is obtained with no other attempts seen. Two correct algebraic expressions or two numerical attempts are seen or a realisation that Rosie is the oldest and Molly is the youngest. No worthwhile work attempted.	$\mathbf{2 - 3} \mathbf{- 1}$Three correct algebraic expressions or three different numerical attempts are seen or the daughters are all in the correct order and clearly identified, in the final answer with Rosie as the oldest, then Daisy, then Tilly and then Molly as the youngest. One correct algebraic expression or one numerical attempt is seen or a realisation that Rosie is the oldest or Molly is the youngest.		

Question			Answer	Marks	Part marks and guidance	
8	(a)		Four points correctly plotted	2	B1 for two points correctly plotted	overlay gives guidance, the tolerance $\pm 1 / 2$ small square
	(b)		positive	1		ignore embellishments accept +ve
	(c)		the height increases as the width increases oe	1	accept any equivalent response	
	(d)	(i)	correct ruled line of best fit	1	$\begin{aligned} & \text { Crossing on "w = 10" 3.5-7.5 and on } \\ & \text { "w=25" 12.5-17.5 } \end{aligned}$	use overlay to judge the validity of the line of best fit
		(ii)	12-18	1		
	(e)		$(18,3.5)$ indicated on the diagram	1		
9			127	4	accept any correct method	See additional guidance Mark the method which leads to the final answer
10	(a)		5.5 oe	3	M1 for $7 x-3 x+a=b$ oe or better ie correctly combining x 's M1 for $c x=20+2+d x$ oe or better ie correctly combining numbers M1 for $x=f / e$ oe or better after ex $=f($ e not 1) to a maximum of 2 marks	
	(b)		$r=\sqrt{A-4}$	2	M1 for $A-4=r^{2}$ oe ie a correct first step or B1 for answer of $r=\sqrt{f(A)}$ or answer of $\sqrt{A-4}$	Ignore signs in front of root accept a Must involve A

Question		Answer	Marks	Part marks and guidance					
$\mathbf{1 1}$	(a)		it is a leading question	$\mathbf{1}$	accept any correct reason	see appendix	$	$	(b)
:---									

Question		Answer	Marks	Part marks and guidance	
13	(a)	[$x=] 3$ and [$y=] 5$ with correct algebraic working	3	M1 for multiplying one or both equations to get equal coefficients with at most one error in each operation M1 for correctly choosing the operation to eliminate one variable and adding or subtracting their equations with at most one error Accept any correct method, if substitution: M1 for rearranging one equation to get x or y as the subject, allowing one error M1 for substituting their expression into the other equation, allowing one error If $\mathbf{0}$ scored then $\mathbf{S C 1}$ for both answers correct and no algebraic working	e.g. two of the three terms in each operation must be correct and these terms define the operation mark best attempt
	(b)	$(x-5)^{2}-15$ final answer	3	B2 for $\mathbf{- 1 5}$ or FT their $(x \pm a)^{2}$ or B1 for $(x-5)^{2}$ If $\mathbf{0}$ scored award SC2 for $(x-5)^{2}-15$ in working	mark final answer and condone double signs eg +-15
14	(a)	2	1		
	(b)	Correct smooth curve	3	B2FT for 6 or 7 points correctly plotted or B1FT for 4 or 5 points correctly plotted	points and curve tolerance $\pm 1 \mathrm{~mm}$, condone some fuzziness in places, penalise ruled line segments between $x=-1$ and $x=+3$
	(c)	$\begin{gathered} -0.5 \text { to }-0.3 \\ 2.3 \text { to } 2.5 \end{gathered}$	1	If 2 not scored check graph and FT their graph for any wrong answers with tolerance ± 0.1	

Question		Answer	Marks	Part marks and guidance	
15	(a)	$\frac{2}{5}$ on first branch and $\frac{3}{4}$ and $\frac{1}{4}$ on second test top branches and $\frac{1}{3}$ and $\frac{2}{3}$ on second test bottom branches	2	B1 for either $\frac{2}{5}$ on first branch or two of the four probabilities on the second test correct	Accept \% or decimals correct to at least 2 sf
	(b)	$\frac{11}{20} \text { oe or }[0] .55 \text { or } 55 \%$	3	M2FT for $1-\frac{3}{5} \times \frac{3}{4}$ Oe or M1FT for all three branches selected, or one branch correctly calculated isw incorrect simplification FT their tree diagram providing the probabilities are positive and <1	$\begin{aligned} & \text { e.g } \frac{3}{5} \times \frac{1}{4}+\frac{2}{5} \text { or } \\ & \frac{3}{5} \times \frac{1}{4}+\frac{2}{5} \times \frac{1}{3}+\frac{2}{5} \times \frac{2}{3} \text { scores M2 } \end{aligned}$ check their tree diagram
16	(a)	55 opposite [angles of a] cyclic quadrilateral [add to 180] oe	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
	(b)	63 alternate segment [theorem]	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
17	(a)	$\begin{aligned} & 4^{2}+6^{2} \text { or better } \\ & \sqrt{52} \\ & \sqrt{4 \times 13} \text { or } \sqrt{4} \times \sqrt{13}[=2 \sqrt{13}] \end{aligned}$	1	soi by 52 soi by $\sqrt{4 \times 13}$ or $\sqrt{4} \times \sqrt{13}$ accept $\sqrt{2} \times \sqrt{2} \times \sqrt{13}$	

Question			Answer	Marks	Part marks and guidance	
	(b)		any two from p 1 2 3 4 5 q $4 \sqrt{ } 3$ $3 \sqrt{ } 5$ $2 \sqrt{ } 10$ $\sqrt{ } 33$ $2 \sqrt{6}$ $\sqrt{13}$	3	B2 for one fully correct solution or for two correct solutions not fully simplified or B1 for one correct solution not fully simplified If $\mathbf{0}$ scored SC2 for both answers correctly simplified and reversed or SC1 for one correctly simplified answer reversed	Unsimplified versions p 1 2 3 4 5 p 6 q $\sqrt{ } 48$ $\sqrt{ } 45$ $\sqrt{ } 40$ $\sqrt{ } 33$ $\sqrt{ } 24$ $\sqrt{13}$ or $2 \sqrt{ } 12$ condone reduction to roots of prime numbers eg $\sqrt{ } 33=\sqrt{ } 3 \sqrt{ } 11$ isw after correct unsimplified versions seen for max B2
18	(a)	(i)	$6.7[0000] \times 10^{5}$	1		
		(ii)	9.2×10^{-3}	1		
	(b)		the power of 10 should be 8	1	accept any correct statement and mark the best response	see appendix
19			$\frac{12}{37}$	3	B2 for $\frac{324}{999}$ oe or M1 for $1000 n=324.324 \ldots$ or $\frac{[0] \cdot 324}{[0] \cdot 999}$	We must have a proper fraction
20	(a)		x^{6}	2	M1 for x^{12} or $\left(x^{n}\right)^{1 / 2}=x^{0.5 n}$ eg $\left(x^{6}\right)^{1 / 2}=x^{3}$	
	(b)		$\frac{x+5}{x+3}$ final answer	4	B2 for $(x+5)(x-3)$ or $\mathbf{B 1}$ for $(x+a)(x$ $+b)$ where $a+b=2$ or $a b=^{-} 15$ and B1 for $(x+3)(x-3)$	

	Answer	Marks	Part marks and guidance	
21	$\begin{aligned} & \overrightarrow{D E}=b-a \text { oe } \\ & \overrightarrow{C A}=4 \mathbf{a} \text { and } \overrightarrow{C B}=4 b \\ & \overrightarrow{A B}=4 b-4 a \text { oe } \\ & \overrightarrow{A B}=4 \overrightarrow{D E} \text { oe } \end{aligned}$	B1 B1 B1 B1	could be ED soi by correct $\overrightarrow{A B}$ or $\overrightarrow{B A}$ could be $\overrightarrow{B A}$ dep on B3	Could be on diagram condone omission of arrows

APPENDIX

Exemplar responses for Q8(c)
Do not allow larger or bigger for height

Response	Mark
Taller trees have wider trunks	$\mathbf{1}$
Thicker trees are taller	$\mathbf{1}$
Trees with a bigger trunk are taller	$\mathbf{1}$
The thicker the tree the higher the trunk	$\mathbf{1}$
Both go up	$\mathbf{1}$
The higher the wider	$\mathbf{1 B O D}$
The Smaller the width the shorter the tree	$\mathbf{1}$
Positive [correlation]	$\mathbf{0}$
The height and the width both change	$\mathbf{0}$
Height is greater than the width	$\mathbf{0}$
Bigger trees have bigger trunks	$\mathbf{0}$
Smaller the width the taller the tree	$\mathbf{0}$
The bigger the width the larger the tree	$\mathbf{0}$
The height and width both change	$\mathbf{0}$

Exemplar responses for Q11(a)

Response	Mark
it is a leading question	$\mathbf{1}$
it is biased	$\mathbf{1}$
you are telling them the answer	$\mathbf{1}$
Do you agree is the wrong term to use (not enough)	$\mathbf{0}$
there are only three boxes to tick	$\mathbf{0}$
It doesn't say which part of public transport buses or trains	$\mathbf{0}$
People may not have used public transport 5 years ago	$\mathbf{0}$

Exemplar responses for Q11(d)(i)

Response	Mark
people more likely to take the train	$\mathbf{1}$
it is only one location	$\mathbf{1 ~ B O D}$
not a wide range of people	$\mathbf{1}$
Not representative of the population	$\mathbf{1}$
Biased	$\mathbf{1 ~ B O D}$
People will be in a rush to catch the train	$\mathbf{1}$
there will be too many people to ask	$\mathbf{0}$
They have already taken the train	$\mathbf{0}$

Exemplar responses for Q11(d)(ii)

Response	Mark
there are people who will not be in the sample	$\mathbf{1}$
you will get mostly those people at home	$\mathbf{1}$
Some people will be at work	$\mathbf{1}$
you may get children answering	$\mathbf{1}$
not everyone has a telephone/not in directory	$\mathbf{1}$
only selects people with a telephone	$\mathbf{1}$
not many may answer the telephone	$\mathbf{1}$
People may refuse to answer	$\mathbf{1}$
it is not a good way to ask questions	$\mathbf{0}$
it is an invasion of privacy	$\mathbf{0}$
Biased	$\mathbf{0}$

Exemplar responses for Q18(b)

Response	Mark
the power of 10 should be 8	$\mathbf{1}$
they should have subtracted the powers	$\mathbf{1}$
two minuses make a plus in the powers	$\mathbf{1}$
when you divide by a negative power you add them	$\mathbf{1}$
when you divide by a number less than 1 the first number gets bigger	$\mathbf{1}$

The answer should be higher than 6.8×10^{5}	$\mathbf{1}$
The answer should be in the millions	$\mathbf{1}$
when you divide by a decimal number it gets bigger	$\mathbf{0}$
the power of 10 is not 2	$\mathbf{0}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

A
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

